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Letters 
The Equilibrium Topography of Sputtered 
Amorphous Solids III. Computer Simulation 

When a non-planar amorphous target is 
bombarded by a uniform beam of ions, sputter- 
ing will occur at different rates at various points 
across the surface, due to both the variation of 
beam density with incident angle and the varia- 
tion of  sputtering coefficient with angle. As a 
result, the original surface contour will begin to 
change and, in so doing will present different 
angles to the ion beam, so that a continuous 
modification of the surface profile will occur 
until, it may be anticipated, an equilibrium profile 
will remain. Recent interest in the technique of 
sputtering surfaces for analysis of target mater- 
ials, for polishing samples, or for thinning 
samples for electron microscopy, has made the 
understanding of the mechanism of the develop- 
ment of rough surfaces during bombardment of 
tantamount importance and attempts have been 
made in earlier publications [1, 2] to treat the 
surface development analytically. It was shown 
in [2] that the equation governing the time 
dependence of the surface angle to the beam was 
analogous to the wave equation and had the 
form, 
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Here the surface contour was represented by a 
curve y = f ( x )  and bombardment was by a 
uniform beam of �9 ions/second in the negative 
y-direction. 0 is the angle of incidence of the 
beam, with respect to the normal to any point 
on the target surface, S the sputtering coefficient 
(which is a function of  0 of the form shown in 
fig. 1) and n the atomic density of the target. 

Solution of equation 1 to give a time dependent 
variation of the contour is not generally possible 
but final equilibrium contours may be predicted 
and are those for which 

q~ 9S 
n 00 c~ 0 = constant (2) 

This condition represents the case where a 
contour will repeat itself after sputtering but 
may move at constant speed in the positive or 
negative x-directions. For the contour to remain 
stationary, the condition is 
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Figure I The function S(O) = 3.2696 cos0 + 13.1059 cos28 
-- 15,3755 cos40 which was used to represent the variation 
of sputtering yield with angle of incidence. 

qb 9S 
n 9-0 c ~  0 = 0 (3) 

Thus a contour containing only vertical and_ 
horizontal elements would reproduce directly 
below its original position and would be 
completely stable. 

It was clearly of interest to find some method 
of following the development of a general 
surface contour to the equilibrium condition. 
For this reason, the present computer program 
was devised. 

For  preliminary studies, an infinite sinusoidal 
surface of the form y = asin27rx/A was 
selected, bombarded in the negative y-direction 
by a uniform ion beam of intensity (I3 ions per 
second. The computer was instructed to record 
the initial co-ordinates (x,y) of 100 equally 
spaced x points (at)l/100 intervals). From earlier 
work, it is clear that the erosion of any point in 
the negative y-direction is proportional to the 
value of S(O) at that point, so that the computer  
was next instructed to reduce each of the 100 
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y-values by amounts proportional to the S value 
at these points. I t  should be pointed out that this 
procedure is not forcing motion of a curve in the 
y-direction only but stimulates motion in both x 
and y directions. The reason for this is that a 
point P on a curve moves along the surface 
normal by a distance r S cos 0 3t in a time 
~t and the x and y co-ordinates of the point are 
thereby changed by ~/n S cos 0 sin 0 3t and 
{I)/n S cos 2 0 3t, respectively. Every point on the 
original curve produces a new point on a new 
curve and there will be one such point Q having 
the same x-co-ordinate as the point P.The change 
in y co-ordinates between P and Q, Ay, is thus 
given by 

cI) 
AY = n (S Cos ~ 0 3 t + S s i n 0 c o s 0  

tan (0 + 80) 6t) 

I t  is readily shown that as 6t -+ 0, Ay ~ r S 3t 
indicating that, at  constant x, the change in the 
y co-ordinates is as used in the simulation. 

Having calculated the new y co-ordinates, the 
new slopes were evaluated at the selected 100 
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Figure 2 Initial changes of a sinusoidal surface of the form 
y = a sin (2~ x)/,~ for  which ~ = 2= a and a = 1. The scale 
factor fl is 1.657, i.e. all y values are shown 1.657 times 
their t rue values. (The numbers on the contours indicate 
the number of steps calculated, each step corresponding 
to a removal of 0.01 t imes the original ampl i tude at the 
points where the beam hits the curve normally.) 
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points and the process repeated, the resulting 
increment in y-erosion being added to any 
previous increment at each step. When the y 
changes are all identical to those in the last step, 
the programme stops and equilibrium has been 
reached. In this simulation, it is not necessary to 
use actual values of  sputtering coefficient, ion 
beam density or target density, since these form 
a normalisation coefficient upon the actual rate of 
surface a tom removal in real time. In general, an 
erosion rate was chosen such that an amount  
0.01 times the original amplitude " a "  was 
removed from the 0 = 0 parts of the curve at 
each stage, although larger speeds of  0.06a gave 
results of almost the same accuracy. End effects 
were eliminated by using points x = 99A/100 and 
x = ;~/100 to interpolate the new slopes at 
x = 0 .  

To produce the equilibrium profile, it was 
necessary to provide the computer with informa- 
tion on the variation of S with 0. From available 
data of Wehner [3] it was clear that S(O) 
increases with 0, reaches a maximum of about  4 
to 5 times the S(0) value at approximately 50 ~ to 
70 ~ and returns to an apparent zero at 0 = 90 ~ 
Curves vary for different materials and a typical 
curve is given empirically by 

S(O) = 3.2696 cos 0 + 13.1059 cos 2 0 - 
15.3755 cos 4 0 (4) 

This is shown in fig. 1 and it is clear that the 
maximum yield occurs at 0 = 45 ~ and is 5.02 
times the S(0) value. Also, the S(O) curve 
returns to the same value as S(0) at 0 = On = 
79 ~ 36�89 

Initially, a sinusoidal curve for which 
a = ;~/27r was selected as the initial surface 
contour, i.e. y = a sin x/a. For this the maximum 
value of 0 is 45 ~ which is, in fact, the maximum 
of the S - 0 function. Fig. 2 shows the initial 
stages 1 to 100 of the change in contour and a 
most evident feature is the development of rapid 
oscillations from step 11 onwards. A thorough 
investigation of these oscillations has shown that 
they arise f rom unavoidable errors induced by 
both approximations of method and non- 
correctable computer errors. For example, the 
estimate of the new slope of a curve requires 
subtraction of two similar numbers, so that 
figures in the last decimal places become critic- 
ally important. This approximate slope is then 
multiplied by large constants to determine the 
next step in the erosion process. Because the 
number of multiplications is very large (n.m 
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Figure 3 Further development of the surface shown in 
f ig,2. Slight changes in profile in the region 1.0 < x < 2.0 
occur but are not visible on these graphs. The scale 
factor fl is now 0.0553. 

where n = the number of iterations and m = the 
number of constants accepted), the rounding 
errors, in the critical points of  the sine wave 
profile, are correspondingly big. From the 
results obtained with different methods, we are 
able to make searching comparisons between the 
accuracy of the various methods of solution and 
also arrive at practical rules governing the safe 
but economical number of intervals which need 
to be used during the computation of the 
solution. More frequently however, the determin- 
ation of a strict bound for the general error in the 
solution requires information which is at least 
as difficult to obtain as the solution itself. 

Generally speaking, the oscillations wash out 
after a large number of iterations and a smooth 
curve results, as for example, in fig. 3, which 
shows the development of  y = a sin x/a up to 
8000 steps, at which point, an apparent equi- 
librium is being approached. 

The simulation shows that the apparent 
equilibrium condition is a triangle which is 
situated in a vertical-sided pit and a horizontal 
plateau; the upward pointing section of the 
sinusoidal contour giving rise to the triangular 
protrusion and the valley developing into the 

plateau. The scale factor # on these diagrams is 
the number of times by which the ordinate scale 
should be increased to give a true scaled picture, 
i.e. the triangle has much steeper sides than shown. 
The angle of the sides of this triangle is, in fact, 
exactly 79 ~ 36�89 i.e. the value for which the 
sputtering yield is equal to that for normal 
incidence. A simple calculation shows that this 
must be the case if a true equilibrium exists (see 
fig. 4). I t  was thought that a more accurate treat- 
ment would result f rom an increase in the 
number of  x-intervals selected from 100 to 1000 
and even to 10000. However, the additional 
computational errors which are introduced 
cancel out any improvement in the data, so that 
whilst the results for 1000 intervals are exactly 
the same, those for 10 000 intervals produce much 
more pronounced oscillations. 
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Figure 4 Illustration of the equilibrium condition that StO) 
must equal S(0). 

Because the S - 0 characteristic is clearly so 
important  in governing the final contour, a 
different S -  0 curve was introduced into the 
programme. This curve had a maximum value 
for Sa t  0 = 67~ and S(0) = S(0)at 0 = 87~189 '. 
The programme for y = sin(2wx)/A was 
repeated with this new S(O) function and an 
identical form of equilibrium is clearly being 
approached as shown in fig. 5. However, slope of 
the triangular sections of the curve are now 
0 = 87 ~189 the new value for which 
S(O) = S(0). 

The computed form of the equilibrium 
contours is as predicted by the previous analytical 
treatment of the process, [2] in that generators 
result for which 0 is equal to 0 ~ 90 ~ or some other 
fixed angle. The computat ion revealed that the 
fixed angle was, in fact, On (the angle for which 
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Figure 5 Deve lopment  of a contour  y = a sin (2= x) /~  f o r  

which ~ =  2~a  and a = 1 using a new S - -  # f unc t i on  of 
the form S = 25 ( cosS- -  1.42 cos20 + 0,46 cos40). The 

scale factor  ~ is 0.0833. 

S(O) = ($0)). This result is clearly due to the 
limiting behaviour of the maximum and mini- 
mum of the sine wave for which the ion beam is 
always normal to the simulated surface. Other 
studies have suggested that the fixed angle should 
be 0 (i.e. the angle for which S is a maximum), 
since a contour with this angle would tend to 
develop more rapidly than others and indeed, 
solution of equation 1 for convex surfaces shows 
that surfaces at all angles rotate, in equilibrium 
to 0. It appears, however, that the dominant 
conditions in deciding the final development of 
the curve is associated with the erosion of that 
part of the surface which is normal to the beam. 

A further interesting feature is the develop- 
ment of the vertical step x = (hA)/2. At such 
points (OO)/Ox is initially zero, i.e. inflexion 
points, and the sputtering rate at both sides of 
such a point will be either greater than or less 
than that at the inflexion value. This immediately 
develops a local maximum and minimum which 
rapidly becomes a quasi-step. The role of the 
inflexion point can be further understood, 
since it represents the transition from a convex 
to a concave surface, the latter part of which 
rotates, according to solution of equation 1 
towards a vertical or horizontal generator, 
according as to whether the angle at the inflexion 
point is greater or less than 0. 
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It should be noted that the present simulation 
treats the apex of the convex surface, at all 
times, as lying normal to the beam with a 
consequent constant erosion rate of S(0). In 
other estimates of the motion of surfaces [4], the 
progress of a point of intersection of lines is 
considered by reference to the motion of the 
lines remote from the point, so that this point, 
which is a discontinuity in equation 1 
([dOl/dx = or) is dictated by the motion of the 
surroundings rather than the reverse, which 
occurs in the present simulation at the apex. In a 
practical situation, the sputtering process is 
dictated by a collision cascade of finite dimen- 
sions, so that it is probably unrealistic to 
consider that the apical point can remain a point 
unaffected by neighbouring sputtering. This mean 
that, although the computer simulation precisely 
represents an idealised situation of point by 
point sputtering, in reality, the special limiting 
action of the 0 = 0 point may not exist. Remov- 
ing this limitation may then result in formation 
of cones of angle 0, as predicted theoretically and 
we are currently conducting further simulations, 
in which the motion of an initially 0 = 0 point 
is dictated by neighbouring points and is 
excluded itself from dominating the process. 

It is surprising to note how much "sputtering 
time" is involved in reaching the equilibrium 
condition. For the y = sin(27rx)/h contour, 
approximately 8000 steps, each of magnitude 0.01 
of the original amplitude of the sine wave, are 
required before equilibrium is reached. This 
means that a depth of over 100 times the original 
amplitude of the undulation must be removed 
before attaining equilibrium, so that, if we are 
dealing with a 1 mm amplitude, 80 mm would 
have to be removed. Obviously, experimental 
observations of surface topography will generally 
compare with contours in the early stages of this 
computer programme. For example, contour 
number 21 of fig. 2, where a thickness 0.2 mm 
has been sputtered away, may be typical. In 
experimental conditions, this contour will, in 
fact, be the section through the three-dimensional 
topography, i.e. it represents a cone in a valley. 
Such contours have, in fact, been observed on 
gold by Navinsek [5 ]. It should be noted that, in 
this treatment, no account is taken of re- 
deposition of sputtered material. Clearly, the 
escape of atoms from the bottom of grooves 
must be restricted, so that one can estimate a 
filling-in of the valleys and a generally less-ragged 
equilibrium contour than is predicted. Also, the 
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effect of ions rebounding at grazing incidence and 
sputtering in a second collision has been 
ignored. 

The computer programme has successfully 
followed the development of a sinusoidal 
surface to an equilibrium form. The angle at 
which the sputtering coefficient is again equal to 
the normal incidence value (On) is of extreme 
importance; in three-dimensional topography, 
cones will develop with semi-vertical angle 
(7 r /2 -  On). Experimental observation of such 
cones is unlikely as the equilibrium does not 
occur until some 100 mm of surface is eroded. 
Intermediate stages in the progress to equilibrium 
will, however, be seen and existing obervations 
support this model. 

Although it is believed that the present 
calculations present the general details of the 
topographical development, further simulation 
with different amplitudes to wavelength values 
and other forms of the S - 0 function are being 
investigated to study the development of real 
surfaces. 
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Short-term Elevated Temperature Tensile 
Behaviour in 0 ~ Sapphire Filament 

The structure and resulting complicated nature 
of the slip process in sapphire [1] give this 
material potential use as a structural material at 
elevated temperature. At the present time, data 
exist for the strengths of whisker and bulk forms 
of sapphire at elevated temperature showing 
more than an order of magnitude variation in 
comparative strengths. This note reports studies 
of the elevated temperature strength of a newer 
type of bulk material available in very long 
filament form having room temperature proper- 
ties approaching the whisker values [2-4]. 

The first measurements of the high temperature 
strength of bulk sapphire crystals were carried 
out in tension, compression and bending by 
Wachtman and Maxwell [5-7] who demonstrated 
that macroscopic plastic deformation could be 
induced above 900 ~ C when the basal plane was 
favourably oriented for slip. Creep by slip on this 
system was observed at low resolved stresses, 11 
to 12 ksi, at 1000 ~ C. This behaviour was shown 
qualitatively to be similar to metals at lower 

�9 1972 Chapman and Hall Ltd. 

temperatures. The same authors [7] also carried 
out a study of the short term properties in bend- 
ing of sapphire having the 0 and 45 ~ orientations 
as a function of temperature up to 1000 ~ C. The 
strength was shown in both cases to show a 
minimum value in the range 400 to 600 ~ C. The 
minimum was lowest in the 0 ~ samples, while the 
maximum was the greatest in the 45 ~ samples. 
In the latter case, the 1000 ~ C strength was 90 ksi 
greater than the room temperature strength. This 
qualitative behaviour was rationalised by the 
hypothesis that plastic crack blunting became 
operative as temperature increased and was most 
effective in those orientations favouring slip. The 
minimum strength has been observed by others 
in experiments carried out in vacuum [8]. 

More recently, tension tests above 1000~ 
have demonstrated that sapphire displays a 
striking yield drop and strain rate effect in tension 
tests so that, from 1100 to 1500 ~ C, the straifi rate 
as well as the temperature is a significant 
determinant of fracture stress [9, 10]. The 
samples in these experiments were 60 ~ rods and 
were favourably oriented for slip on the basal 
system. 
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